## Study the biological activity of some antibiotics and their complexes, with some metals

\*Yasser.O. AL-Allaf, \*\*Rawaa.T. Hameed, \*\*\*Heyam.A. Al-Tai

\*Department of Chemistry, \*\*\* Department of Biology, College of Sciences, University of Mosul, Mosul, Iraq.

\*\* Department of Chemistry, College of Basic Education, Dep. Of Science, University of Mosul, Mosul, Iraq.

\*\*Received11/11/2009 accepted15/2/2009

#### **Abstract**

The research is concerned with studying of activity of some antibiotics (Tetracycline, Gentamycine and streptomycine) and their complexes with some metal (Ca, Mg, Fe) were been studied by electric conductivity, ultraviolet spectroscopy (UV) to compare the biological effects of these complexes with the physiochemical methods for determination of this complexes such as association constant  $K_A$ , equivalente conductance ( $\Lambda^o$ ) at infinit dilution and the distance between ions in solution R at the best fit values of standard deviation ( $\sigma\Lambda$ ) which are calculated for each antibiotic and their complexes with the absorbance of these complexes in neutral medium at room temperature.

# دراسة الفعالية البايولوجية لبعض المضادات الحيوية ومعقداتها مع بعض الفلزات ياسر عمر العلاف رواء طارق حميد هيام عادل الطاني

#### المستخلص

تم دراسة فعالية بعض المضادات الحيوية (تتراسايكلين، حينتامايسين وستربتومايسين) ومعقداتها مع بعض الفلزات (Mg ،Ca ،Fe) بطريقة التوصيلية الكهربائية وطيف الاشعة فوق البنفسجية لمقارنة التأثير البايولوجي لهذه المعقدات مع الطرق الفيز وكيميائية لتقدير هذه المعقدات من خلال بعض الثوابت التي تم الحصول اليها (KA) ثابت التجمع الايوني و  $\Lambda$  التوصيل المكافئ عند التخفيف الى ما لانهاية و (R) المسافة بين الايونات في المحلول عند احسن قيمة للانحراف القياسي ( $\Lambda$ ) والتي حسبت لكل مضاد حيوي ومعقداته مع الامتصاصية للمعقدات في وسط مائي وفي درجة حرارة الغرفة.

#### Introduction

Physiochemical properties determine the process by which drugs reach and interact with sites of action, it is important to examine the extent to which any one property correlates with the observed biological activity. the possible importance of such properties as dissociation at the pH of the body fluid, interatomic distances between functional groups redox potential by hydrogen bonding, dimensional factor chelation and the special configuration of molecule are worthy consideration<sup>(1)</sup>, A classic electroanalytical technique that finds application in a variety of chemical and biochemical studies is ameasurements of solution conductivity to provide basic determination of ionic strengths of solutions and thermodynamic data of other electrolytic solution<sup>(2)</sup>.Many studies made for the complication like protenation and complication forming of divalent complexes of Quinotone with antibiotics by potentiometric titration and spectrophotometric method and this shown that the activity of antibacterial for these drugs depends on pH and the concentration of metal positive ion in the solution (3). Preparation and synthesis of ampiciline complexes with many metal ions by reaction with sodium ampicilinate were made by (Bravo) and (Anacona) at room temperature .The complexes were been studied by conductivity measurements, susptibility spectrophctometric method and the study confirms that these complexes octahedral<sup>(4)</sup> The electrical conductivities of 5-(P-substituted) phenylazo barbituric acid compounds and their complexes were measured, the results illustrate faint semi conductivity beheaviour for these system, the conductivities were found to depend on the structure of the compounds. The metal ion forms a bridge between the ligands to facilitate the transfer of current carriers with some degree of delocalization in the excited state (5).

#### Experimental

#### Purification of solvent:

Conductivity water was prepared by redistilliny water three times with the addition of a little amount of potassium permangenate and small plettets of (KOH)<sup>(6)</sup>, the specific conductance of water was less than 1.2×10<sup>-6</sup> (S. cm<sup>-1</sup>).

### Preparation of solutions:

A solution of 10<sup>-3</sup>M of each drug (streptomycine, Gentamycine, Tetracycline) were prepared from standard drugs from SDI by weighting a known amount of each drug in deionized water. The salts of metal ions prepared (1×10<sup>-3</sup>M of each of FeCl<sub>2</sub>, MgCl<sub>2</sub>, CaCl<sub>2</sub>) by the same way in deionized water also.

Tetracycline

Gentamycin

Streptomycin

#### General procedure:

All stock solutions were prepared freshly by weighting and using freshly prepared solvent, conductivity measurements were made using Conductivity water. The cell constant of the conductivity cell was measured by using the method of Jones and Bradshow<sup>(7)</sup>, a standard addition method has been used for measuring the conductance of electrolyte solutions. The conductivity cell was washed, dried, and then weighted empty and kept at (25 C°) ± 0.1 C° using a water-circulating ultra thermostat. A certain amount of solution was injected in to the conductivity cell and the conductivity of the solution was measured Electronic conductivity, cell constant compens is 1.05, No. 911 F0013, Another known amount of the solution was added and the measurement was repeated as before. Generally (15) additions have been made through out each run. For the mixed solutions the addition was made by kept the concentration of the drug and changing the concentration of the salt added.

#### Results and Discussion

Lee and Wheaton derived a conductance equation based on a new model for ions in solution. The equation describes transport in solutions containing any number of ionic species, of any valency type, and hence is suitable for use with symmetrical, unsymmetrical or mixed electrolytes<sup>(8)</sup>. For symmetrical electrolytes where the cospheres of a pair of ions M+ and X-overlap, the pair is taken to be associated and thus takes no part in charge transport.

Hence for free M+ and X- ions the charge density P(r) for r<R is by definition zero, using this model the conductance equation for symmetrical electrolyte has obtained having the general form  $\Lambda$ eq. =  $f(\Lambda^{\circ}, R, KA)$  where  $\Lambda^{\circ}$  the equivalent conductance at infinite dilution, R is the mean distance between ions in solution and KA the pairwise ion association constant.

$$M_{aq}^{+} + X_{aq}^{-} \Box (M_{aq}^{+} X^{-})^{0}$$

Where may be zero, and R the distance parameter which is defined as the distance between anion and cation.

The simplest form of L-W equation for symmetrical electrolyte (1:1) is:

 $\Lambda = \Lambda^{c}$ 

$$[1 + C_1(KR)(\varepsilon K) + C_2(KR)(\varepsilon K)^2 + C_3(KR)(\varepsilon K)^3] - \frac{\rho K}{1 + KR} \{1 + C_4 4(KR)(\varepsilon K) + C_5(KR)(\varepsilon K)^2 + KR/12\}$$

Where the concentration – dependent terms are both the "plasma parameter" ( $\varepsilon K$ ) and (KR). The concentration – coefficient are functions of these parameters.

$$\rho = \frac{F\delta|z|}{3\pi y}$$

Where F=Faraday constant  $(9.64867 \times 104\text{C}, \text{Mol}^{-1})$  and  $\delta$  is a conversion factor (volt  $\rightarrow$  e.s.u) = The term C1  $\rightarrow$  C5 have been defined previously.(8)

For unsymmetrical electrolyte for example MX2 two possible association equilibrium can be noted:

$$M^{2+} + X^K \xrightarrow{A^1} MX^+$$
 and

$$MX^+ + X^- \xrightarrow{K} A^2 MX_2$$

Where a new charge – carrying species  $MX^+$  is created. Therefore there are three kinds of ions  $M^{2+}$ ,  $MX^+$  and  $X^-$  where are all conducting species.

Where s is the number of ionic species, Ci is the stoichrometric equivalent concentration,  $\lambda i$ , mi and Zi are the ionic equivalent conductance, molar free ion concentration, and charge of the species, respectively. for electrolytes of a type (2:1) where ion association occurs:

Aequiv.= $f(\lambda^{\circ}M^{2+}, \lambda^{\circ}MX^{+}, K_{A}^{(1)}, K_{A}^{(2)}, R)$ The general form of (L-W) equation of unsymmetrical electrolyte is

$$\begin{split} \lambda_{j} &= \lambda_{j}^{0} \left\{ 1 + Z_{j} \sum_{p=2}^{S} X_{j}^{p} \sum_{v=1}^{S} tv X_{v}^{p} \left[ A_{v}^{p}(t)(BK) + \sum \frac{|z|^{2}e^{2}}{DKT}, K^{2} \right. \\ &\left. \left. - \frac{8\pi N^{2} e|z|^{2}C}{1000DKT} + B_{v}^{p}(t)(BK)^{2} + C_{v}^{p}(t)(BK)^{3} \right] \right\} - \frac{|Z_{j}|(K_{z})^{2}}{2(1+t)} \end{split}$$

$$\left\{1\!+\!V_{j}^{(1)}(t)(BK)\!+\!V_{j}^{(2)}(t)(BK)^{2}\!+\!\pi_{j}^{(5)}t/6\right\}$$

Where the plasma coefficient  $A_{\nu}^{p}$ ,  $B_{\nu}^{p}$  ----etc. are function of KR and  $q_{p}$ . The terms  $X_{j}^{p}$  and  $q_{p}$  are functions of the limiting mobilities, of the solution. The terms  $C_{\nu}^{p}$  and  $V_{\nu}^{(2)}$  are in complete, and are usually set equal to zero. However, Pethybridge finds<sup>(9)</sup>.  $V_{j}^{(2)}$  must be included in order to obtain reasonable  $X_{Ma^{+}}^{p}$  values for MCl<sub>2</sub> in water (M=alkaline earth metal).A multiparameter least square curve sitting

procedure is used to give the lowest value of curve fitting parameter  $\sigma(\Lambda)$  between the experimental and calculated points. An iterative numerical method which was found to be very successful has been used to find the minimum  $\sigma(\Lambda)$ 

$$\sigma \Lambda = \left\{ \sum_{n=1}^{NP} (\Lambda_{calc} - \Lambda_{exp.})^2 / NP \right\}_{1/2}$$

(Gentamycine, antibiotics Streptomycine and Tetracycline) are used as a ligand from its reaction with some metal salts as (FeCl2, MgCl2, on CuCl2) to which identified complexes spectrophoto metrically to know the metallic bonding with ligand and their equilibrium constant under standard condition by using molar percent method which gives values of formation constant between (10<sup>7</sup> -10<sup>14</sup>) and to know more information about Gibbs free energy which confirm with the high stability of the complex (10). The following are the results of typical conductivity A as shown in table (1) and figur (1) for antibiotics only (Gentamycine, streptomycine tetracycline) in aqueous medium.

Table (1): The equivalent conductivity (S. cm2. equiv-1) with M concentration of the antibiotics in water

| Conc.10 <sup>-4</sup> | Λ Genta. | A Strep. | Λ Tetra. | $\sqrt{2_{10}^{-2}}$ |
|-----------------------|----------|----------|----------|----------------------|
| 0.40                  | 11.042   | 26.2.11  | 26.9.19  | 0.63                 |
| 1.20                  | 10.3.83  | 20.8.75  | 26.4.62  | 1.09                 |
| 2.00                  | 6.0.90   | 20.4.81  | 23.0.54  | 1.41                 |
| 2.80                  | 5.2.76   | 18.5.95  | 21.6.91  | 1.67                 |
| 4.00                  | 4.7.54   | 16.4.23  | 17.2.42  | 2.00                 |
| 5.20                  | 4.0.15   | 15.2.23  | 15.7.74  | 2.28                 |
| 6.40                  | 3.9.21   | 15.0.15  | 15.6.32  | 2.52                 |
| 7.60                  | 3.6.11   | 14.9.15  | 14.5.24  | 2.75                 |
| 9.20                  | 3.3.32   | 14.6.51  | 14.2.94  | 3.03                 |
| 10.00                 | 2.1.05   | 14.4.13  | 13.8.17  | 3.16                 |
| 12.00                 | 2.9.11   | 14.2.10  | 13.5.20  | 3.46                 |
| 14.00                 | 2.5.78   | 14.0.05  | 13.0.15  | 3.74                 |

From Table and Figure (1) it is clear that the behavior of antibiotics were very weak electrolyte. The molar conductivity follow the sequence:  $\Lambda$  Gentamycine  $< \Lambda$  streptemycine  $< \Lambda$  Tetracycline. This may be attributed to the structure effect toward

water and to the increasing of molecular weight in the same manner of  $\Lambda^{\circ}$ . Table (2) show the analysis of the results of the antibiotics by using (L- W) equation for symmetrical electrolytes.

Table (2): values of KA (association constant)  $\Lambda^{\circ}$  (equivalent conductivity at infinite dilution) and R (distance parameter and  $\sigma$  standard deviation) of the three antibiotics in water at room temperature.

| Drugs         | R A°                 | K <sub>A</sub> | ٨٠    | σ     |
|---------------|----------------------|----------------|-------|-------|
| Gentamycine   | 1×10 <sup>-8</sup>   | 84             | 52.5  | 0.015 |
| Streptomycine | 1.3×10 <sup>-8</sup> | 1709           | 259.0 | 0.081 |
| Tetracycline  | 1.6×10 <sup>-8</sup> | 20025          | 275.5 | 0.074 |

From table (2) the data show also the same sequence of  $\Lambda^{\circ}$ :  $\Lambda^{\circ}$  Gentomycine  $< \Lambda^{\circ}$  Streptomycine  $< \Lambda^{\circ}$  Tetracycline, the

This behavior is obey Bjeerum theory and the theoretical expression of KA is due to formation of CIP (contact ion pair)

Where: KA 
$$\frac{4\pi N}{3000}$$
 a3 eb  $\frac{8}{R}$  b =

Where  $\beta$  is Bjeerum constant and equal to the ratio between the electrostatic forces ei ej/Da for the ions 1, j which have a distance a between them, is the long energy forces, and when SSIP (solvent separated ion pair) formed so (R = a + ds) but when (CIP) (R=a) so the value of  $e^{B/R}$  for (CIP) > SSIP and the value of KA (SSIP) less than KA(CIP) and (SSIP) and this as shown from the value of KA and R. The value of standard deviation ( $\sigma$ ) are very small for the drugs which indicate that L-W) equation is applicable for each drug in solution.

Complexation of drugs with metal ions: Different spectra were measured using shimadzu UV-1650 PC) with two microcuvetes operating in the UV-visible region with full scale explanation of 0.0-2 association constant (KA) follow the sequence:

KA Gentomycine < KA Streptomycine < KA Tetracycline

units for absorbance spectra. One microcuive was filled with distilled water, other measurements are for the drug and metal ion  $(1\times10^{-4})$  with distilled water. The results of complexation of different metal ions with drugs by conductivity method is shown in table 3 (A-C) and fig 2: (A-C)

Table (3-A): The equivalent conductivities (S. cm<sup>2</sup>. equiv.-1) with concentration of complex:

| Cone 10 <sup>-5</sup><br>mol/L | √ <i>c</i><br>×10 <sup>-</sup> | Λ<br>Strep.+FeCl <sub>2</sub> | A<br>Strept.+CaCl <sub>2</sub> | Λ<br>Strept.+MgCl <sub>2</sub> |  |  |
|--------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--|--|
| 4.0                            | 6.3                            | 217                           | 210                            | 238                            |  |  |
| 8.0                            | 8.9                            | 112                           | 124                            | 124                            |  |  |
| 12.0                           | 10.9                           | 86                            | 87                             | 87                             |  |  |
| 16.0                           | 12.6                           | 65                            | 72                             | 78                             |  |  |
| 20.0                           | 14.1                           | 52                            | 63                             | 63                             |  |  |
| 24.0                           | 15.4                           | 48                            | 52                             | 52                             |  |  |
| 28.0                           | 16.7                           | 45                            | 45                             | 48                             |  |  |
| 32.0                           | 17.8                           | 39                            | 42                             | 45                             |  |  |
| 36.0                           | 18.9                           | 37                            | 40                             | 43                             |  |  |
| 40.0                           | 20.0                           | 36                            | 38                             | 42                             |  |  |

Table (3-B): The equivelent conductivities S. cm<sup>2</sup>. equiv<sup>-1</sup> With concentration of complex

| Cone 10 <sup>-5</sup><br>mol/L | $\sqrt{c} \times 10^{-3}$ | ΛTetra+<br>FeCl <sub>2</sub> | ATetra+<br>CaCl <sub>2</sub> | ATetra+<br>MgCl <sub>2</sub> |
|--------------------------------|---------------------------|------------------------------|------------------------------|------------------------------|
| 4.0                            | 6.3                       | 175.8                        | 210.6                        | 199                          |
| 8.0                            | 8.9                       | 105.0                        | 112.0                        | 119                          |
| 12.0                           | 10.9                      | 76.1                         | 76.0                         | 87                           |
| 16.0                           | 12.6                      | 62.3                         | 65.0                         | 72                           |
| 20.0                           | 14.1                      | 52.5                         | 52.5                         | 63                           |
| 24.0                           | 15.4                      | 48.1                         | 48.1                         | 52                           |
| 28.0                           | 16.7                      | 45.0                         | 46.7                         | 48                           |
| 32.0                           | 17.8                      | 42.6                         | 42.6                         | 45                           |
| 36.0                           | 18.9                      | 37.6                         | 40.0                         | 43                           |
| 40.0                           | 20.0                      | 36.7                         | 36.0                         | 42                           |

Table (3-C) The equivalent conductivities (S  $\cdot$  . cm<sup>2</sup> .equiq. -1) with concentration of complex

| Cone 10 <sup>-5</sup><br>mol/L | √C×10 <sup>-3</sup> | ΛGenta.+<br>FeCl₂ | ΛGenta.+<br>CaCl <sub>2</sub> | ΛGenta.+<br>MgCl <sub>2</sub> |
|--------------------------------|---------------------|-------------------|-------------------------------|-------------------------------|
| 4.0                            | 6.3                 | 215.25            | 233.0                         | 228.0                         |
| 8.0                            | 8.9                 | 118.12            | 124.0                         | 123.0                         |
| 12.0                           | 10.9                | 81.33             | 87.0                          | 87.0                          |
| 16.0                           | 12.6                | 65.62             | 72.0                          | 72.0                          |
| 20.0                           | 14.1                | 57.75             | 63.0                          | 63.0                          |
| 24.0                           | 15.4                | 48.12             | 52.0                          | 56.0                          |
| 28.0                           | 16.7                | 48.75             | 48.0                          | 48.0                          |
| 32.0                           | 17.8                | 42.65             | 45.0                          | 45.0                          |
| 36.0                           | 18.9                | 40.85             | 43.0                          | 43.0                          |
| 40.0                           | 20.0                | 34.37             | 39.6                          | 41.0                          |

The behavior of complexes were weak electrolytes and obeys Kolorash equation for weak electrolytes. The equivalent conductivity of the complexes solutions against the square root of concentration are shown before. Table (4) shows the results

of analysis of the complexes of each antibiotic with each metal ion using Lee-Wheaton equation for unsymmetrical electrolytes by conductivity method.

Table (4): Values of KA association constant  $\lambda m^{2+}$  (ionic conductivity) and R (distance

parameter) for complex solution in water.

| ) for complex solution in water. |                    |                |                             |       |        |  |  |  |  |  |
|----------------------------------|--------------------|----------------|-----------------------------|-------|--------|--|--|--|--|--|
|                                  |                    | K <sub>A</sub> | λ <sub>m</sub> <sup>2</sup> | R(A°) | σΑ     |  |  |  |  |  |
| streptomycine                    | +FeCl <sub>2</sub> | 205<br>00      | 20<br>0                     | 33.5  | 0.0220 |  |  |  |  |  |
|                                  | +CaCl <sub>2</sub> | 115<br>00      | 21<br>0                     | 28.5  | 0.0201 |  |  |  |  |  |
|                                  | +MgCl <sub>2</sub> | 117<br>50      | 24<br>9                     | 31.5  | 0.020  |  |  |  |  |  |
| Tetacycline                      | +FeCl <sub>2</sub> | 121<br>26      | 13<br>6                     | 20.5  | 0.0182 |  |  |  |  |  |
|                                  | +CaCl <sub>2</sub> | 113<br>12      | 16<br>4                     | 30.0  | 0.031  |  |  |  |  |  |
|                                  | +MgCl <sub>2</sub> | 115<br>10      | 19<br>0                     | 29.5  | 0.025  |  |  |  |  |  |
| Contamyoina                      | +FeCl <sub>2</sub> | 632<br>5       | 12<br>0                     | 14.0  | 0.0285 |  |  |  |  |  |
| Gentamycine                      | +CaCl <sub>2</sub> | 616<br>0       | 13<br>0                     | 16.0  | 0.0290 |  |  |  |  |  |
|                                  | +MgCl <sub>2</sub> | 642<br>0       | 14<br>0                     | 18.0  | 0.0310 |  |  |  |  |  |

The association constant for the complexes follow the series:KA Strepto. Complexes > KA Tetra. Complexes > KA Genta. Complexes as shown in table (4), since streptomycine contain (7) atoms of nitrogen and (12) atoms oxygen so it is more polar than Tetracycline which

contain (2) atoms N and (8) atoms oxygen, Gentamycine complexes have (5) atoms nitrogen and (7) atoms oxygen and has less KA values than Tetracycline complexes because of steric effect and hydrogen bonding



Fig (2-A): The plot of equivalent conductivities against square root of concentration for streptomycin with Fecl<sub>2</sub>, Cacl<sub>2</sub>, Mgcl<sub>2</sub> ix  $\overline{\text{Cov}}$   $\overline{\text{MCV}}$  /L



Fig (2-B): the plot of equivalent conductivities against square root of concentration for Tetracycline with Fecl<sub>2</sub>, Cacl<sub>2</sub>, Mgcl<sub>2</sub> in water.



Fig (2-C) the plot of equivalent conductivities against square root of concentration for Gentamycine with FeCl<sub>2</sub>, CaCl<sub>2</sub>, MgCl<sub>2</sub> in water.

The ionic equivalent conductivity  $(\lambda M^{2^+})$  of the complexes are as follows  $\lambda M^{2^+}$  Strept. Complexes  $> \lambda M^{2^+}$  Tetra. Complexes  $> \lambda M^{2^+}$  Genta. Complexes. This can be attributed to the structural effect<sup>(11)</sup> The association constant for the metal drug complexes follow the sequence KA Fe complexes > Mg complexes > Ca complexes And the ionic equivalent conductivity decreases as follows  $\lambda M^{2^+}$  Fe Complexes  $< \lambda M^{2^+}$  Ca Complexes  $< \lambda M^{2^+}$ 

Mg Complexes this is because of the periodic properties of the metals and the ionization energies of them. The study of spectral properties of complexes provides much information which usually sheds considerable light on structure and bonding concerned with the difference between the ground state and the excited state of molecules. Direct evidence of orbital energy levels can be obtained from electronic spectra.

Table (5) the value of the wave length and absorbance of the antibiotics only and their

complexes with (FeCl<sub>2</sub>, CaCl<sub>2</sub> and MgCl<sub>2</sub>)

| drugs         | metal              | Wave length | absorbance |
|---------------|--------------------|-------------|------------|
| streptomycine |                    | 272         | 0.407      |
| streptomycine | +FeCl <sub>2</sub> | 344         | 0.650      |
| streptomycine | +CaCl <sub>2</sub> | 274         | 0.621      |
| streptomycine | +MgCl <sub>2</sub> | 272         | 0.678      |
| Tetacycline   |                    | 234         | 0.4        |
| Tetacycline   | +FeCl <sub>2</sub> | 266         | 0.65       |
| Tetacycline   | +CaCl <sub>2</sub> | 270         | 0.615      |
| Tetacycline   | +MgCl <sub>2</sub> | 232         | 0.670      |
| Gentamycine   |                    | 298         | 0.215      |
| Gentamycine   | +FeCl <sub>2</sub> | 308         | 0.252      |
| Gentamycine   | +CaCl <sub>2</sub> | 266         | 0.104      |
| Gentamycine   | +MgCl <sub>2</sub> | 288         | 0.298      |

Table (5) show the absorbance of the antibiotics only and the complexes with the wave lengths. The electronic spectra for the studied complexes have been measured to give new bands and the bands mentioned in table (5) for ligand are shifted to longer or shorter wave length in the complex spectra which indicate the formation of complexes. The association constant decrease with increasing the ionic radius as can be seen before and also the absorbance decrease in the order. KA Ca  $(complexes) < K_A$  Fe  $(complexes) < K_A$ Mg (complexes) This is because Ca<sup>+2</sup> have a tendency to react with oxygen and Mg<sup>+2</sup> have more covalent character. The biological activity of the complexes show that gentamycine complexes was very

sensitive toward many kinds of bacteria (Bacillus subfilis, Ps. aeruginos, KL pneumonia, E-coli, ---- ets). So there is a relationship between the ion association KA and ionic equivalent conductance  $\lambda^{2+}$ with the biological activity of the complexes of antibiotics. Gentamycine complexes have low values of KA and  $\lambda^{2+}$ so they have more active sits in the association form to increasing sensitivity toward many kinds of bacteria This mean that the motion of ions in the solution  $\lambda^{2+}$  is very slow and more effective towards the bacteria. This mean that as the value of KA small for all complexes the activity increase toward the bacteria as show in table  $(6)^{(12)}$ .

Table (6): Show the biological activity of the complexes toward many kinds of bacteria.

| R   Ms   S   R   R   Ms   S   R   R   R   R   R   R   R   R   R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | E-col | i        | P    | roteu                                          | IS |       | Kleb |   |   | Pseud |   |                    |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------|----------|------|------------------------------------------------|----|-------|------|---|---|-------|---|--------------------|--------|
| Fect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R | Ms    | S        | R    | Ms                                             | S  | R     | _    | _ |   | -     | - | Com                | piexes |
| Fect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |       | +        |      |                                                | +  |       |      |   |   |       | , | S+                 | Low    |
| Fecl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | <u> </u> |      |                                                |    |       |      | _ |   |       | - | Fecl <sub>2</sub>  |        |
| Fecl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | +        |      |                                                | _  |       |      | _ |   |       |   | 1                  | High   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       | <u> </u> |      |                                                |    |       |      |   |   |       |   |                    |        |
| High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |       | +        |      |                                                | -  |       |      | _ |   |       | _ | 1                  | Low    |
| Harmonia   High   High   High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |       |          |      |                                                |    |       |      |   |   |       |   |                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       | +        |      |                                                | -  |       |      | _ |   |       |   | E                  | High   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       |          |      |                                                |    |       |      |   |   |       |   |                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       | +        | 1225 |                                                | _  | 11.61 |      | + |   |       | _ | 1                  | Low    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       | _        |      |                                                |    |       |      |   |   | -     |   |                    |        |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | +        |      |                                                | -  |       |      | + |   |       | - | 1                  | High   |
| Fecl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |       | -        |      |                                                |    |       |      |   |   |       |   |                    |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + |       |          |      |                                                |    |       |      | _ |   |       | - | 1                  | Low    |
| Fecl <sub>2</sub> + - + - T+ Low Mgcl <sub>2</sub> T + High Mgcl <sub>2</sub> T + High Mgcl <sub>2</sub> T + Low Cacl <sub>2</sub> T + Cacl <sub>2</sub> T + High Cacl <sub>2</sub> T + G + High Cacl <sub>2</sub> T |   |       | -        |      |                                                |    |       |      |   |   |       |   |                    |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | +     |          |      |                                                | -  |       |      | - |   |       |   |                    | High   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                |    |       |      |   |   |       |   |                    |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                | -  |       |      | + |   |       | _ | 1                  | Low    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | ~~     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                | -  |       |      | - |   |       |   |                    | High   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                |    |       |      |   |   |       |   | Wigci <sub>2</sub> | T .    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                | +  |       |      | - |   |       | - |                    | Low    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | YY     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       |          |      |                                                | -  |       |      | - |   |       | - |                    | nigii  |
| + + + + + G+ Hig  + C + Hig  Fecl <sub>2</sub> + G+ Hig  Fecl <sub>2</sub> + G+ Hig  Mgcl <sub>2</sub> + G+ Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | LOW    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | +     |          |      |                                                | -  |       |      | - |   |       | + |                    | LUW    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l |       |          |      |                                                |    |       |      |   |   |       |   |                    | High   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       | +        | -    | 1                                              | +  |       |      | + |   |       | + |                    | mgn    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | Low    |
| + + + + G+ Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |       | +        |      |                                                | +  |       |      | - | . |       | + |                    | ALIUYY |
| + H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | High   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |       | +        |      | No. of Lot, Lot, Lot, Lot, Lot, Lot, Lot, Lot, | +  |       |      | - |   |       | + |                    | ****   |
| $C + I_{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | Low    |
| + + Cacl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |       | +        |      |                                                | +  |       |      | - |   |       | + |                    |        |
| C+ Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |       |          |      |                                                |    |       |      |   |   |       |   |                    | High   |
| + + + Cacl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |       | T        |      |                                                | +  |       |      | + |   |       | - |                    |        |

#### References

- 1. Wilson and Gisvolds "Text book of Organic and Medicinal and Pharmaceutical Chemistry 8<sup>th</sup> edition" (1982).
- 2. L. Coury, "Biochemistry system" Inc. Coury @ Bioanalytical Com.(1999).
- 3. H. R. Park, K.Y. Chung, H. C. Lee, J. K. Lee and K. M. Bark, Bull Korean Chem. Soc. 21(9), 849-854 (2000).
- 4. A. Bravo. and J. R. Anacona, J. Cord. Chem 44(1-2), 173-182 (1998).
- 5. M. S. Masoud and E. A. Khalil, Rreactivity of solid, 2, Issue. 3, 269, (1986).
- 6. W. G. Palmer "Experimental physical chemistry" Cambridge at the university press, London, 186 (1954).

- 7. G. Jones and B. C. Bradshow, J. Phys. Chem. 55, 1780, (1930).
- 8. W. H. Lee and R. J. Wheaton, J. Chem. Soc, Faraday Trans 2, 74, 1456 (1979).
- 9. B. A. Akrawi, Ph.D. Thesis, University of Surrey Guildford (1981).
- 10. M. A. Gonzales and S. M. Abdallah, Spectrochim, Acta, part A (2004).
- 11. A. M. Addosh, M. Sc. Thesis (2005) university of Mosul, Iraq.
- 12. National Committee for Clinical Laboratory Standards (2003) 6<sup>th</sup> ed, 23 (2): 1-46.