Indirect Determination of Amitriptyline Hydrochloride by Square Wave Voltammetry of SnCl₂.2H₂O

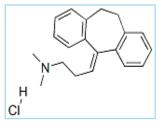
* Suham Towfig amine, **Ali Ibrahim, ***Asmaa Ahmed Mohammed *,** Department of Chemistry, College of Science, University of Tikrit, Tikrit, Iraq *** Department of Chemistry, College of Education, University of Tikrit, Tikrit, Iraq

Abstract

A simple, fast and sensitive electroanalytical method consist studying the square wave of SnCl₂.2H₂O at hanging mercury dropping electrode in aqueous solution for the indirect determination of (AMI) drug. SnCl₂.2H₂O has revealed a major reduction potential at (-0.450) Volt against the reference electrode (Ag/AgCl/Sat.KCl). The calibration curve in the Phosphate buffer as the supporting electrolyte at pH=2 was constracted. The range concentrations up to $(0.99 \times 10^{-5} - 9.91 \times 10^{-5})$ M, the correlation coefficient (r= 0.9989) and then studied the decreased of peak current of the drug by the (HMDE) behavior in the presence of SnCl₂.2H₂O. Results were as follow: The calibration curves were (0.316 X10⁻ -3.136 X10⁻⁶) M and thismethods was successfully applied to determination of AMI in apharmaceutical formulations.

Keywords: Amitriptyline hydrochloride; Square wave voltammetry.

التقدير غير المباشر لعقار هيدروكلوريد الامتربتلين بوساطة فولتامتري مربعة الموجة لكلوريد القصديروز المائي


سهام توفيق امين على ابراهيم خليل أسماء أحمد محد

الخلاصة

طريقة كهروكيميائية بسيطة وحساسة وسريعة تتضمن دراسة لفولتامتري الموجة المربعة لتقدير كلوريد القصديروز المائي عند قطب قطرة الزئبق المعلقة في محلول مائي للتقدير غير المباشر لعقار هيدروكلوريد الامتربتلين وقد اعطى المركب قمة اختزال عند (0.450-) فولت مقابل قطب فضبة /كلوريد الفضبة كقطب مرجع وكان مدى التراكيز في المحلول المنظم للفوسفات عند دالة حامضية (2) (⁵⁻ 9.91X10 -⁵ - 0.099 مولاري وبمعامل ارتباط 0.9989 ثم درس التناقص في قمة الاختزال بوجود اُلعْقارُ وكان مدى التركيز (⁶⁻³.136 ×10⁻⁶ x10) مولاري وطبقت الطريقة بنجاح على المستحضر ات الصيدلانية مع قيم عالية للاستر دادية لم تقل عن 99.72.

Introduction

Amitriptyline hydrochloride (AMI). 3-(10, 11- dihydro-5H-dibenzo-[a,d]cyclohepten-5-ylidene)-N,N- dimethylpropan-1-amine hydrochloride, (Brand Name: Elavil, Endep, and Vanatrip)⁽¹⁾. Its structure is:

And its structural formal is C_{20} H₂₄ClN: molecular weight 313.86, melting point: 196 -197 ° C, which is a white powder or colorless crystals soluble in water, alcohol and methylene chloride. This drug is one of the group of tricyclic drugs .It is used in the treatment of depression or anxiety or chronic insomnia and helps in adjusting the levels of the chemical compounds in the brain such as noradenalin which are responsible for the psychological state. It is also used for the treatment of nocturnal urination especially in children over the age of six years and to prevent migraine headaches (2), in addition to treatment pain and numbness and severe twitching resulting from the pain of spine ⁽³⁾. This drug is determined in different analytical methods, GC/MS within the range of 80 -5000 ng/L and RSD% was found to be not more than 5.5 % ⁽⁴⁾. Amitriptyline HCl and perphenazine were determined simultaneously the isoabsorptive point for both drugs was 253.20 nm in tablet dosage form⁽⁵⁾.Eriochrome cyanine R(ECR) and pyrocatechol violet (PCV) have been tested as reagent for the determination of amitriptyline (AMI)⁽⁶⁾. Liquid- membrane ion-selective electrodes that respond to the cationic forms of chlorpromazine to the ammonium quaternary compound ⁽⁷⁾.Isocratic propantheline **RP-HPLC** method was developed by T.Reddy et. al. ⁽⁸⁾ for the determination of amitriptyline

HCl in pure and dosage forms method ⁽⁹⁾ performance based on high liquid chromatography electrospray with ionization mass spectrometry (HPLC-MS/ESI) has been developed for the simultaneous determination of amitriptyline and nortriptyline in plasma of rat. The construction and performance characteristics potentiometric of amitriptyline-plastic membrane sensors, based on ion-pair complexes with borate and tetra(2triphenylstibenyl chlorophenyl)borate, respectively⁽¹⁰⁾.A novel low-cost amperometric method of sensor based on thick-film technique is presented and used to determine tricyclic antidepressant drug AMI(11).A simple spectrophotometric method for the estimation of chloride ion in AMI based on reaction between chloride ion and mercuric thiocyanate, forming a coloured absorbs at 460nm ⁽¹²⁾. The complex present work aim to develop indirect method for determination of AMI through the square wave voltammetric behavior of SnCl₂.2H₂O.

Experimental Apparatus

Voltammetric measurements were carried out using a metrohm instrument, model 797VA, computerized HMDE (hanging mercury dropping electrod) as a working electrode, and (Ag/AgCl-Sat KCl) as reference electrode and a platinum wire as an auxiliary electrode. The pH of the solutions was controlled with a (Jenway 3310 UK) pH meter.

Reagents

All of the chemicals used were of analytical-reagent grade. The supporting electrolyte used for all experiments was phosphate buffer which was prepared by mixing (1:1) a certain volumes of (0.2) M of each of Na₂HPO₄.2H₂O, NaH₂PO₄.2H₂O. Phosphate buffer (pH=2) was prepared by dissolved (0.78) g of NaH₂PO₄ .2H₂O in 0.34 ml of phosphoric acid (85%) and the volume was completed to 100ml by distilled water.

Hydrous Tin Chloride (SnCl₂.2H₂O) 0.01 M

was prepared by dissolving 0.0225 g in small amount of 0.1M HCl and the volume was completed to 10 ml by distilled water.

AmitriptylineHCl(AMI)standardsolustion0.00318M.

Prepared by dissolved 0.1000 g of (AMI) in a small amount of distilled water and the volume was completed by distilled water in a 100 ml volumetric flask, the least concentrations ranged were prepared by appropriate dilution.

Preparation of pharmaceutical form solution0.0079 M.

A homogenized powder was prepared from ten accurately weighed Amitriptyline HCl tablets (Amitriptyline Tablets 25 mg (actavis, Barnstaple, EX32 8NS, UK). An amount appropriate (0.10339 gm)equivalent to one tablet was dissolved in distilled water. Dissolution of the drug was assisted by means of a magnetic stirring and an ultrasonic bath .the mixture was then filtered and made up to the mark with distilled water in 100ml volumetric flask to obtain solution (0.0079M) and the least concentrations were prepared by sequential dilution.

Procedure

Standardization of instrument:

square wave voltagram (SWV) has А been recorded for10ml in acetate buffer solution at pH=4.5 in a clean and dry cell after degassing for 300 second by nitrogen gas under experimental conditions as shown in table (2),then 50 µl of (250 ppm) of Cu(II) ,Pb(II) ,Cd(II) and Zn(II) solution is added and SWV have been recorded for these ions, after being 15sec.by N₂ and degassed for gas compared with values of standard voltammetric diagram. (Figure1).

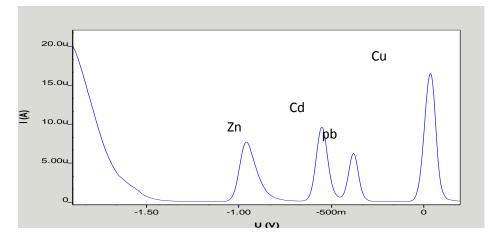


Fig. (1):- SWV voltammogram of 250 ppm of (Cu ,Cd ,Pb and Zn)(II)

Results and discussion Preliminary investigations.

The SWV(HMDE) of (4.98×10^{-5}) M SnCl₂.2H₂O in different phosphate buffers

(2-10) were recorded for the sample using a dry cell containing 10 ml of each buffer solution after degassing for 300 sec. The optimum pH for determination the sample is pH=2 which gave the heights diffusion current (Ip) at potential $-0.450^{(13)}v$ (Ep) (table 1 and Figure 2).

pH	Potential (Ep) V	(Ip) nA
2	-0.450	410
3	-0.466	350
4	-0.483	203
5	-	-
6	-0.585	161
7	-0.602	152
8	-0.632	110
9	-	-
10	-0.68	98

Table (1):- Effect of different phosphate buffers on SWV of SnCl₂.2H₂O.

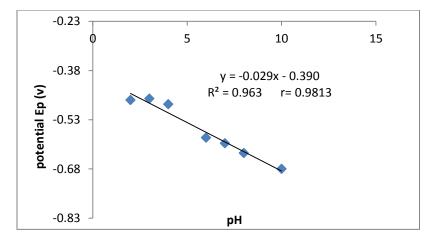
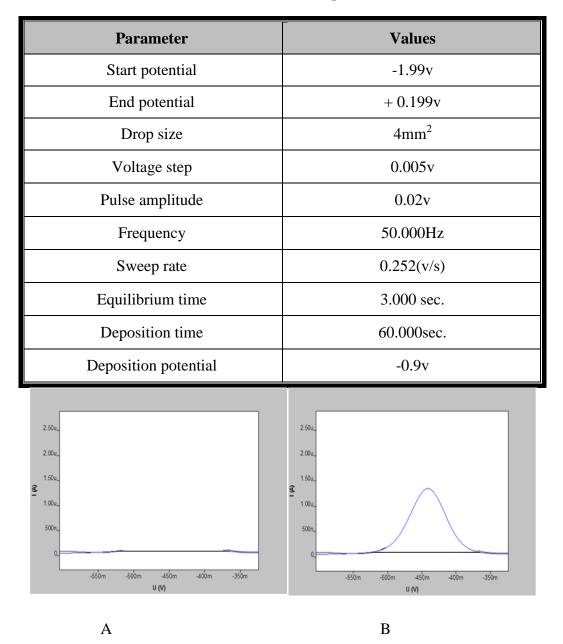



Fig. (2):- Effect of different phosphate buffers on SWV of SnCl₂.2H₂O.

The result shown in table (1) and (Figure 2) indicates that pH=2 phosphate buffer ave maximum current values and have been used for determination. The slope close is to value of Nernest equation for divalent species. Depend on this result

recorded solution of (4.98×10^{-5}) M SnCl₂.2H₂O in 10 ml phosphate buffer pH=2 at Instrumental parameter after degassing the solution by N₂ gas for 300 sec., table (2) shows that

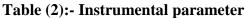


Fig (3):- A- SWV voltammogram for the buffer solution (pH=2). B- SWV voltammogram of SnCl₂.2H₂O in buffer solution (pH=2).

Study of optimum conditions

A set of SWV experiments were carried out for deareated solution of $(2.998X10^{-5})$ M of SnCl₂.2H₂O in buffer solution pH=2.The measurements were performed by changing one of the operating conditions and fixing the parameters. The summary of optimum values that gives the highest peak current for (2.998×10^{-5}) M of SnCl₂.2H₂O are shown in Table (3).

Conditions	Values
Voltage step V	0.0060v
Pulse amplitude V	0.0700v
Frequency Hz	60.0000Hz
Sweep rate (v/s)	0. 3570 (v/s)
Equilibrium time sec.	6.0000 sec.
Deposition potential V	-0.6000v
Deposition time sec.	60.0000sec.
Drop size mm ²	4.0000mm ²

Table (3):- The optimum values which give the highest peak current for SnCl₂.2H₂O.

Calibration curve of SnCl₂.2H₂O solutions.

The SWV of different concentrations of (0.01) M SnCl₂.2H₂O between (10 -100 μ l) equivalent to (0.99X10⁻⁵ – 9.91X10⁻⁵) M have been recorded at optimum

conditions at Ep = -0.45 as in (table 3) in 10 ml phosphate buffer pH=2 after degassing for 15 sec. For each sample, (Figure 4) the current plotted against the SnCl₂.2H₂O concentration.

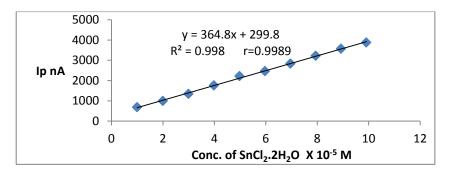
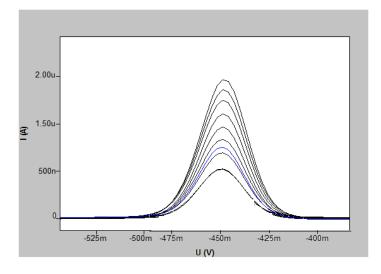
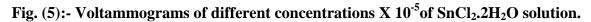




Fig.(4):- Calibration curve of (0.99X10⁻⁵ – 9.91X10⁻⁵) M of SnCl₂.2H₂O.

The figure shows a linear relationship shows the voltammogram of different between Ip and concentration with concentrations of $SnCl_2.2H_2O$. correlation coefficient r = 0.9989, (Figure 5)

The value (0.9989) of correlation coefficient and 0.4360X10⁻⁷M for detection limit indicating a good linearity and sensitivity. Statistical treatment of the calibration curve results showed that values of RSD%, limit of confidence at

95% and relative error does not exceed 0.1543, 3.795 and (-4.639–0.0965) respectively. The recovery was ranged between (95.364-103.990). These values (Table 4 and 5) indicates a good precision and accuracy.

Conc. (SnCl ₂ .2H ₂ O) X10 ⁻⁵ M	*Measured response (nA)	(S)	(RSD%)	confidence limits %95
0.99	688.00	1.000	0.1453	688.00 ± 2.480
1.98	989.33	1.527	0.1543	989.33 ± 3.795
2.99	1340.00	1.000	0.0746	1340.00 ± 2.479
3.98	1756.66	0.7018	0.0399	1756.66 ± 1.743
4.98	2217.67	0.7018	0.0316	2217.67 ± 1.743
5.97	2461.00	1.0000	0.0406	2461.00 ± 2.479
6.95	2835.34	1.5270	0.0538	2835.34 ± 3.795
7.94	3218.67	1.0000	0.03107	3218.67 ± 2.48
8.92	3567.67	0.7018	0.0196	3567.67 ± 1.743
9.91	3874.34	1.5270	0.0394	3874.34 ± 3.795

*n=3

Table (5):- Accuracy and precision for the SnCl₂.2H₂O.

Conc. (SnCl ₂ .2H ₂ O) X10 ⁻⁵ M	*Measured response (nA)	Calculated value	Rec%	RE%
0.99	688.00	664.6.000	96.5980	-3.4011
1.98	989.33	1025.3872	103.5486	3.5486
2.99	1340.00	1393.4704	103.9903	3.9903
3.98	1756.66	1754.6224	99.8840	-0.1159
4.98	2217.67	2119.4224	95.3644	-4.6355
5.97	2461.00	2480.9392	100.8102	0.8102
6.95	2835.34	2838.0784	100.0965	0.0965

7.94	3218.67	3197.7712	99.3507	-0.6492
8.92	3567.67	3556.7344	99.6953	-0.3065
9.91	3874.34	3917.8864	101.1239	1.1239

*n=3

Stability of SnCl₂.2H₂O.

SWV using (2.998×10^{-5}) M of SnCl₂.2H₂O in 10ml phosphate buffer pH=2 after degassing by N₂ gas for

300sec. were recorded under optimum conditions and at different times. The results obtained are shown in Table (6).

Time (min)	Ip (nA)
0	1340
5	1344
10	1343
15	1342
20	1340
25	1342
30	1343
35	1330
40	1329
45	1330
50	1317
55	1315
60	1309

Table (6):- Stability of SnCl₂.2H₂O on Ip

Table (6) shows that SnCl₂.2H₂O is stable for at least (45) min. which is quite enough to perform all the voltammetric measurements. peak current Ip=2259nA. A decrease to 1221 nA of the peak is observed when $1.575X10^{-6}$ M of (AMI) was added. so,

 $\Delta Ip = Ip^{\circ} - Ip$

Indirect SWV determination of Amitriptyline hydrochloride (AMI) drug.

2259 -1221 = 1038

Applying the optimum conditions , the SWV has been recorded on degassed solution of $4.988 \times 10^{-5} \text{ SnCl}_2.2\text{H}_2\text{O}$ in 10 ml phosphate buffer pH=2 which gives

This behavior is due to interaction of $SnCl_2.2H_2O$ after reduced to Sn^{+4} with AMI, (Figure 6)

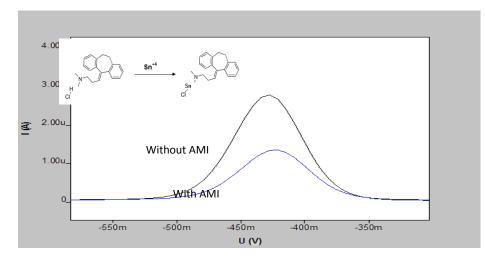


Fig. (6):- Voltammogram of SnCl₂.2H₂O with and without AMI drug.

The calibration curve of AMI in the presence of SnCl₂.2H₂O

The SWV has been recorded on degassed solution of 4.988 $X10^{-5}$ M SnCl₂.2H₂O in 10ml phosphate buffer at pH=2, Successive amounts of AMI (0.318X10⁻³) M between (10-100) µl were then added

and the SWV was recorded after each addition .The peak current Ip of $SnCl_2.2H_2O$ was found to be decreased gradually with the addition of AMI.The plot of (ΔIp) versus concentration of AMI drug added is shown in (Figure 7).

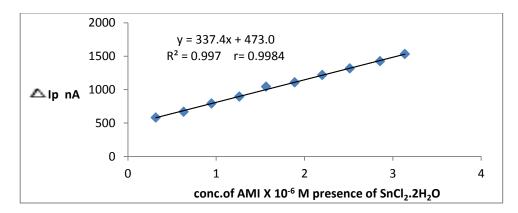


Fig. (7):- Calibration curve of $(0.316 \times 10^{-6} - 3.136 \times 10^{-6})$ M of AMI in the presence of SnCl₂.2H₂O.

Table (7):- Statistical treatment of the results of the calibration curve of AMI in the
presence of SnCl ₂ .2H ₂ O.

Conc. (AMI) X10 ⁻⁶ M	*(Δ <i>Ip</i>) (nA)	(S)	(RSD%)	confidence limits %95
0.316	581.00	1.000	0.0595	581.00 ± 2.4844
0.632	666.34	1.527	0.0959	666.34 ± 3.7936
0.947	791.00	1.000	0.0681	791.00± 2.4844
1.261	895.00	1.000	0.0733	895.00± 2.4844

1.575	1042.00	2.000	0.1643	1042.00 ± 4.968
1.889	1108.67	1.680	0.1460	1108.67±4.1743
2.201	1219.00	2.000	0.1923	1219.00 ± 4.968
2.513	1315.67	1.680	0.1781	1315.67 ± 4.174
2.825	1423.00	2.000	0.2392	1423.00 ± 4.968
3.136	1532.00	2.000	0.2715	1532.00 ± 4.968

*n=3

Table (8):- Results of accuracy for the determination of AMI in the presence of
SnCl2.2H2O.

Conc. (AMI) X10 ⁻⁶ M	*(Δ <i>Ip</i>) (nA)	Calculated value	Rec%	RE%
0.316	581.00	579.7533	99.7854	-0.2145
0.632	666.34	686.3042	102.9961	2.9961
0.947	791.00	792.6190	100.2046	0.2046
1.261	895.00	898.5288	100.3942	0.3942
1.575	1042.00	1004.4387	96.3952	-3.6047
1.889	1108.67	1110.3486	100.1514	0.1514
2.201	1219.00	1215.6174	99.7225	-0.2774
2.513	1315.67	1320.8862	100.3964	0.3964
2.825	1423.00	1426.3237	100.2335	0.2335
3.136	1532.00	1531.0864	99.9403	-0.0596

*n=3

Stability of AMI in the presence of SnCl₂.2H₂O.

SWV of $SnCl_2.2H_2O$ (2.998X10⁻⁵) M + (AMI) 1.5751 X10⁻⁶ M in 10ml phosphate

buffer pH=2 after degassing by N_2 gas for 300sec. were recorded under optimum conditions and at different times. The results obtained are shown in table (9)

Table (9):- Effect of time on SWV of AMI in the presence of SnCl₂.2H₂O.

Time (min)	Δ Ip (nA)
0	1045
5	1043
10	1040
15	1038
20	1035
25	1031
30	1028
35	1025
40	1021
45	1020
50	1017

55	1014
60	1010

As it is clear from table (9) there is a gradual decrease in the Ip value and it is possible to record the measurement within (20) min.

Application of the method for the determination of (AMI) drug in pharmaceutical formulations.

AMI drug is determined in tablet pharmaceutical preparation after preparing a series of solutions. The measurements was achieved by direct method of the calibration curve and an average of three readings for each concentration Table (10) shows the concentrations of the drug in the formulation and the relative error and recovery.

Table (10):- Application the method for the determination of pharmaceutical preparation(Amitriptyline Tablets) by direct method in the presence of SnCl₂.2H₂O.

Conc. (Amitriptyline Ta.) taken X10 ⁻⁶ M	*(Δ <i>lp</i>) (nA)	Conc. (Amitriptyline Ta.) found X10 ⁻⁶ M	Rec.%	RE%
0.316	583.00	0.3260	103.0412	3.0412
1.261	897.34	1.2576	99.7206	-0.2793
2.513	1313.00	2.4896	99.0698	-0.9301

* n=3

The results of table (10) shows a good accuracy where the relative error does not exceed 3.0412 and the recovery is not less than 99%.

Conclusion

A simple, fast and sensitive electroanalytical method for the indirect determination of AMI drug based on decreased of peak current for reduction of

References

1. J. O'Neil. The Merck Index. Merck & Co. Inc. 14th Ed. Whitehouse Station: NJ; 7183, 487, 2006.

2. L. Mishra Drug Today, Vol-1. Lorina Publications (India) Inc. Delhi; April-June , 479, 2006.

3. G. Guaiana, C .Barbui and M.Hotopf, Amitriptyline for depression, Cochrane Database Systematic Rev. 18 (3), 2007.

4. F.Rabie, D.Mahmoud ,H.Hamdi and F.Wael , Validated method for the

SnCl₂.2H₂O using SWV technique at HMDE in the presences of Phosphate buffer as the supporting electrolyte at pH=2. A proposed method has been observed a accuracy and precision from the values of relative error and recovery and this method has been applied to determination the drugs in the formulations pharmaceutical with satisfactory results.

simultaneous determination of some tricyclic antidepressants in human urine samples by chromatography –mass spectrometry, International Journal of Analy

tical and Bioanalytical Chemistry 3(2), p. 59-63, 2013.

5. P.Dhara and P.Vivek , Simultaneous estimation of Amitriptyline Hydrochloride and Perphenazine by absorption ratio (Q-Analysis)UV spectrophotometric method

in combined tablet dosage form, Patel et al., IJPSR, Vol. 1 (12, p. 133-137), 2010.

6. S.Barbara and J.Anna, Analytical application of the reactions of Amitriptyline with Eriochrome cyanine R and Pyrocatechol violet, Acta polonia pharmaceutica-Drug Research .vol.60(6),p.417-423, 2003.

7. P.Anastasid, K.Theodore ,P.Eleftherios and P.Themistocles , Construction of ionselective electrodes for Chlorpromazine ,Amitriptyline ,Propantheline and Meperidine :Analytical study and Application to pharmaceutical Analysis , Analyst ,vol.110, pp.1091-1095, 1985.

8. T.Reddy ,G.Vijaya ,N.Babu and C.Rambabu , A stability indicating RP-HPLC method for the determination of amitriptyline hydrochloride in pure and dosage forms, Journal of Pharmacy Research; Vol. 5 Issue 7,p.3896, 2012.

9. Y.Shen,R.Zhu ,H.Li,Y.Liu and P.Xu, Validated LC-MS(ESI) assay for the simultaneous determination of Amitriptyline and its metabolite nortiptyline in rat plasma:Application to a pharmacokinetic comparison , Journal of Pharmaceutical and Biomedical Analysis Vol. 53, No. 3, pp.735-739, 2010.

10. A.Andrei ,S.Mariana ,P. Cornelia and V.Vasile , Amitriptyline –selective plastic membrane sensors and their pharmaceutical applications, Analyst, 116, pp.239-243, 1991.

11. R.Betata ,D.Marek ,K.Jerzy,T.Waldyslaw and G. Dorota , A Approach Tricyclic new to Antidepressants detection Based on Graphite Micro, sensors Fabricated by an -The 14th Innovative Method ,IMCS Chemical International Meeting on Sensors,2012.

12. P.Venkatesan ,P.Subrahmanyam and D.Raghu , Spectrophotometric determination of Pure Amitriptyline Hydrochloride through ligand exchange on Mercuric Ion, International Journal of ChemTech Research,Vol.2, No.1, pp. 54-56, 2010.

13. K.Ohiko and K.Hirahisa, Square-wave polarographic determination of microamounts of tin in pure iron,vol 15(11),pp.1219-1223,1966.