Lipids profile in type II Diabetes mellitus during Ramadan Fasting

Dhia . F. Jameel . AL shaikhly
Dept. of Pharmaceutical Sciences, College of pharmacy, Tikrit University, Tikrit, Iraq
Received 17/2/2007; accepted 26/4/2007

Abstract
A prospective study of (25) patients suffer from type II diabetes mellitus (age 45 – 62 year) was carried out to determine the biochemical changes of serum cholesterol , HDL – cholesterol , LDL cholesterol , triglycerides , LP (a) and Hba,C. The Comprison analysis of pre–fasting with fasting and post – fasting samples did not reveal any statistically significant changes in the value of the lipid profiles . A slight change in serum albumine was noticed , but otherwise ther was no change in other biochemical values , with marked decrease and increase in the weights of the patients(2).

المستخلص
دراسة تقديرية لـ (25) مريض مصاب بالنوع الثاني لمريض السكري تراوحت اعمارهم بين (25-62) سنة لاستماع تأثير
صيام شهر رمضان على عناصر الدهون (الكولسترول) الدهون الثلاثية ، الكولسترول الحدي والخبيت وكذلك الهيپوغلوبين (أ
وج) . أجريت مقارنة لتلك المواد الكيميائية قبل وبعد صيام شهر رمضان (لمدة 29 يوم) حيث اظهرت الدراسة عدم وجود
تغيرات جوهريه في اجزاء الدهون ، كما اظهرت الدراسة حصول تغيرات طفيفة في اجزاء الأليومين مع ملاحظة تغيرات في
وزن المرضى (زيادة وتقص).
Introduction

Many reports have been published on the variable effects of fasting in Ramadan on serum lipid parameters (1, 3). The month of Ramadan contains (29-30 days), the experience of fasting is intended to teach Muslims self-discipline and self-restraint and remind them of the impoverished. Muslims observing the fast are required to abstain not only from eating and drinking, but also from consuming oral medication, intravenous nutrition fluids, (9). Diet control is an important factor in the treatment of type II diabetes (4) fasting in Ramadan is a duty laid down on all adult Muslims with only a few exceptions. There are a few papers on the effect of Ramadan fasting on lipid parameters and most studies report change on limited number of lipids sub-fraction (7,8). A Medline search for the last 10 years did not show any data on APOA-I, B in type II diabetics during fasting. A diagnosis most diabetics reduce their daily activities in fear of hypoglycemia (11). These factors may result in not only a lack of weight loss, but also a weight gain in such patients (10,11).

Methods and analysis:

Twenty-five patients with type II diabetes were recruited to the study and they agreed to give three fasting samples of blood. The first sample was taken one month prior to Ramadan fasting, the second during the last week of fasting while the third one after one month of Ramadan. The patients were instructed to have their Suhoor (last meal) early and to be fasted 12 hours before they gave blood samples. All samples were analyzed immediately after collection.

The analysis was as follows

Cholesterol

Enzymatic method: described by Allain and al. (13), which reaction scheme is as follows:

1. Cholesterol esters
2. Cholesterol + O₂ → CO
3. Cholesterol 4 one 3 + H₂O₂
4. 2H₂O₂ + Phenol + PAP → P
5. Quinoneimine (Pink) + 4H₂O

Reagents Composition:

Vial R1 Buffer
- Phosphate buffer: 100 mmol/L
- Chloro - 4 - phenol: 5 mmol/L
- Sodium Chlorate: 2.3 mmol/L
- Triton × 100: 1.5 mmol/L
- Preservative

Vial R2 Enzymes
- Cholesterol oxidase (CO) ≥ 100 IU/L
- Cholesterol esterase (CE) ≥ 170 IU/L
- Peroxidase (POD) ≥ 1200 IU/L
- 4 - Amino - antipyrine (PAP) 0.25 mmol/L
- PEG 6000

Vial R3 Standard
- Cholesterol 200 mg/dL (5.17 mmol/L)

Reagents Preparation:

Add promptly the content of vial R2 (Enzymes), into vial R1 (Buffer).
Mix gently until complete dissolution (approximately 2 minutes).
Add promptly 20 mL vial R1 (Buffer) to the content of vial R2 (Enzymes).

Vial R2: If appropriate, use a non-sharp instrument to remove aluminium cap.
Manual Assay

Let stand reagent and specimens at room temperature.

<table>
<thead>
<tr>
<th>Pipette into well</th>
<th>Blank</th>
<th>Standard</th>
<th>Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent</td>
<td>1 mL</td>
<td>1 mL</td>
<td>1 mL</td>
</tr>
<tr>
<td>Demineralised water</td>
<td>10 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td></td>
<td>10 μL</td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td></td>
<td>10 μL</td>
<td></td>
</tr>
</tbody>
</table>

Mix. Let stand for 5 minutes at 37°C or 10 minutes at room temperature. Record absorbances at 500 nm (480-520) against reagent blank.

Colour is stable for 1 hour.

Note: Specific procedures are available upon request for automated instruments. Please contact BIOLABO technical support.

Calculation:
Calculate the result as follows:

\[
\text{Result} = \frac{\text{Abs}(\text{Assay}) \times \text{Standard}}{\text{Abs}(\text{Standard})} \times \text{concentration}
\]

Vial R1
Standard
Cholesterol 100 mg/dL (2.58 mmol/L)

Specimen Collection and Handling (6):
Specimens should be collected after 12 h-14 h fasting.

Plasma: collected on EDTA.
Centrifuge and remove plasma from blood cells as soon as possible (within 3 hours).
Serum: Centrifuge and remove serum from blood cells as soon as possible (within 3 hours).
Avoid oxalate, fluoride, citrate or heparin.
HDL-Cholesterol in specimen is stable for:
• 1 to 3 days at 2-8°C
• 1 month at -20°C.

Interferences (15) (16):
PTA/Mg\(^{2+}\) procedure is less sensitive to hyperlipemia than heparin/Mn\(^{2+}\) procedure. The procedure is sensitive especially to reaction conditions. It may be affected by temperature, timing in supernatant-precipitate separation. For a more comprehensive review of factors affecting this assay refer to the publication of Young D.S.

Assay:
With Total BIOLABO Cholesterol CHOD PAP or "Let stand reagents supernatants room temperature.

HDL-Cholesterol (PTA) Precipitant

Principle (14):
This reagent is only for treatments before determination of HDL-Cholesterol with a reagent for total cholesterol. Low density lipoproteins (LDL), very low density (VLDL) and chylomicrons from specimens are precipitated by phosphotungstic acid (PTA) and Magnesium chloride. HDL-Cholesterol obtained in supernatant after centrifugation is then measured with Total Cholesterol reagent (i.e.: CHOLESTEROL CHOD-PAP BIOLABO [REF] 80106).

Reagents Composition:

Vial R1 Precipitant
Phosphotungstic acid (PTA) 13.9 mmol/L
Magnesium chloride 570 mmol/L
Calculate the result as follows:

\[
\text{Result} = \frac{\text{Abs (Assay)}}{\text{Abs (Standard)}} \times \text{Standard concentration} \times 1.1
\]

Standard remaining undiluted, 1.1 factor takes into account dilution of the specimen during the precipitation step.

Triglycerides

Enzymatic method:

Principle: (17)

Triglycerides are determined according to the following sequence:

- Lipase - glycerokinase - glycerol 3 phosphate oxidase - peroxidase - chromogen.
- Lipase
- Triglyceride \(\rightarrow\) +fatty acid

Glycerol + ATP \(\rightarrow\)

\[\text{glycerol} - 3 \text{ phosphate} + \text{ATP}\]

Glycerol 3 phosphate + O₂ \(\rightarrow\)

\[\text{glycerol} \ 3 \text{ phosphate oxidase}\]

\[\text{H}_2\text{O}_2 \rightarrow \text{Dihydroxy} - \text{acetone phosphate}\]

The Hydrogen peroxide produced is measured according to a TRINDER type reaction.

\[\text{H}_2\text{O}_2 + \text{Parachlorophenol} \rightarrow \text{quinoneimine} + 2 \text{H}_2\text{O} + \text{HCl} + 4\text{-aminoantipyrine}\]

The intensity of the coloration (quinoneimine) measured is proportional to the triglyceride content of the sample. Presentation and content of the KIT(150 tests).
Reagent 1
Standard
1 x 8 ml (liquid)

Reagent 2
Buffer
2 x 90 ml (liquid)

Reagent 3
(reconstituted with R2)
Enzymes
6 x 25 ml (lyophilized)

R1
Glycerol
2.29 mmol/l or 2 g/l of triglycerides
(Average MW of triglycerides = 875)

R2
Tris buffer pH 7.6
Parachlorophenol
Magnesium
100 mmol/l
2.7 mmol/l
4 mmol/l

R3
Protein base buffer (bovine origin)
4-Aminoantipyrine
Lipase
Glycerokinase
Glycerol-3-phosphate oxidase
Peroxidase
0.8 mmol/l
0.4 mmol/l
≥1000 U/l
≥200 U/l
≥2000 U/l
≥200 U/l

1 package insert

This reagent contains 1% of Tris. A material safety data sheet is available on request.

Assay:
Wavelength: 505 nm (492-550 nm)
Zero adjustment: reagent blank

### Standard Blank	Standard	Sample
Standard | - | 10 µl | -
Sample | - | - | 10 µl
Reconstituted | 1 ml | 1 ml | 1 ml

Mix.
Perform photometry after incubation for:
- 5 minutes at 37°C,
- 10 minutes at 20-25°C.
Interpretation:
Interpretation of the test results should be made taking into consideration the patient's history and, if necessary, the results of any other tests performed.

Calculation:
Sample concentration = \(\frac{\text{Abs (Assay)}}{\text{Abs (Standard)}} \times \frac{n}{n} \)

\(n = \) concentration of standard

Conversion Factor:
\(\text{mmol/l} \times 0.875 = \text{g/l} \)
\(\text{g/l} \times 1.14 = \text{mmol/l} \)
\(\text{mmol/l} \times 87.5 = \text{mg/dl} \)
\(\text{mg/dl} \times 0.0114 = \text{mmol/l} \)

The other biochemical findings were estimated by autoanalyzer and flame photometer. The medications which were taken by patients are:
- a - tenolol 100 mg / day (antihypertensive).
- b - simvastatin 20mg / day (drug lowering lipid).
- c - capotin 50 mg twice daily (vasodilator and antihypertensive).

Statistical Analysis:
To compare the three groups before, during then after one month fast we used multivariate Analysis of variance.

Results
Table (1) shows the characteristics of the patients studied. Most patients were male ranging (55-62) years old while female ranging (45-58) years old. The hypertensive patients (7) were on (tenolol 100 mg day) alone and other (6) were not treated by simvastatin 20 mg / day and other (4) patients were treated by simvastatin 20 mg / day. Other patients were treated by capotin 50 mg twice daily as a vasodilator and antihypertensive. All the medication were continued in the same manner during Ramadan fasting except the change of the time taking these drugs. The serum lipid profile in the three different groups (25 patients) from which we noticed no valuable change in most parameter during the three period (before, during and after fasting). While from table 3 we noticed linear function tests were all about normal except mild change in serum albumin (slight increase during fasting and continuing there after). Otherwise there were no statistically significant change. Table 4 shows the change in weights during these three periods; such that the females undergoing increased in weight while males (7) of them had gain in weight, the other (11) patients had decreased in weight.
Table (1): characteristics of the studied patients.

<table>
<thead>
<tr>
<th>No.</th>
<th>Sex (m/f)</th>
<th>Age mean (range)</th>
<th>Diet only</th>
<th>Oral hypoglycemic</th>
<th>Insulin</th>
<th>Associated CVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18/7</td>
<td>54</td>
<td>3</td>
<td>16</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

IHD	3
CVA	3
Renal	2
Lipid lowering agents	4
Hypotensive medication	13

CVD = cardiovascular disease.
CVA = cerebrovascular Accident.

Table (2): Mean Serum Lipid Profile in the 3 Groups.

<table>
<thead>
<tr>
<th>Biochemical parameters</th>
<th>One month pre-fast</th>
<th>End of Ramadan fast</th>
<th>One month after the end of fast</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. cholesterol</td>
<td>5.6 ± 1.1</td>
<td>5.8 ± 1.3</td>
<td>5.9 ± 1.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>1.84 ± 0.98</td>
<td>2.02 ± 1.1</td>
<td>1.8 ± 0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>HDL-C</td>
<td>1.2 ± 0.35</td>
<td>1.2 ± 0.3</td>
<td>1.2 ± 0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>LDL-C</td>
<td>3.5 ± 1.2</td>
<td>3.69 ± 1.1</td>
<td>3.8 ± 1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>LP(a)</td>
<td>37.9 ± 24.8</td>
<td>35.5 ± 22.8</td>
<td>31.3 ± 22.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

All values are in mmol/L except LP(a) is expressed in mg/dL. Values are mean ± SD.
Table(3): Mean Serum biochemistry values in the 3 groups.

<table>
<thead>
<tr>
<th>Biochemical parameters</th>
<th>One month pre-fast</th>
<th>End of Ramadan fast</th>
<th>One month after the end of fast</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS</td>
<td>10 ±4.2</td>
<td>12.0 ±5.2</td>
<td>9.8 ±4.3</td>
<td>0.1</td>
</tr>
<tr>
<td>HbA,C</td>
<td>8.6 ±2.1</td>
<td>8.2 ±1.6</td>
<td>7.9 ±2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Urea</td>
<td>5.76 ±1.9</td>
<td>6.0 ±2.1</td>
<td>8.4 ±2.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Creatinine</td>
<td>84.4 ±27.2</td>
<td>88.9 ±25.8</td>
<td>88.8 ±34.2</td>
<td>0.7</td>
</tr>
<tr>
<td>Total protein</td>
<td>75.4 ±3.7</td>
<td>73.9 ±3.9</td>
<td>75.6 ±4.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Albumin</td>
<td>138.7 ±3.2</td>
<td>40 ±4.3</td>
<td>41.9 ±3.6</td>
<td>0.00*</td>
</tr>
<tr>
<td>Calcium</td>
<td>2.39 ±0.1</td>
<td>2.4 ±0.1</td>
<td>2.4 ±0.1</td>
<td>.9</td>
</tr>
<tr>
<td>Phosphorous</td>
<td>1.2 ±0.1</td>
<td>1.3 ±0.1</td>
<td>1.31 ±2.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total Bilirubin</td>
<td>9.5 ± 6.4</td>
<td>8.7 ±7.2</td>
<td>9.1 ±5.3</td>
<td>0.8</td>
</tr>
<tr>
<td>ALT</td>
<td>32.0 ±24.5</td>
<td>28.6 ±9.6</td>
<td>33.9 ±24.8</td>
<td>0.6</td>
</tr>
<tr>
<td>ALKP</td>
<td>100.8 ±31.3</td>
<td>94.9 ±32.5</td>
<td>95.4 ±25.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

* P - value significant
all values are in mmol/L except HbA,C was expressed in percentage.
Table(4): The weight change during the three periods

<table>
<thead>
<tr>
<th></th>
<th>Pre fast</th>
<th>During fast</th>
<th>After fast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight range</td>
<td>(63 - 88)</td>
<td>(64.3 - 89.6)</td>
<td>(62.8 - 87.5)</td>
</tr>
<tr>
<td>Average</td>
<td>75.5 kg</td>
<td>76.9 kg</td>
<td>75.2 kg</td>
</tr>
<tr>
<td>Male (7)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a - (7)</td>
<td>(56 - 75) kg</td>
<td>(57.8 - 77) kg</td>
<td>(57 - 74.1) kg</td>
</tr>
<tr>
<td>Average</td>
<td>65.5 kg</td>
<td>67.4 kg</td>
<td>65.5</td>
</tr>
<tr>
<td>b - (11)</td>
<td>(58 - 72) kg</td>
<td>(57.5 - 70)</td>
<td>(57.7 - 71.8)</td>
</tr>
<tr>
<td>Average</td>
<td>65 kg</td>
<td>63.7 kg</td>
<td>64.8 kg</td>
</tr>
</tbody>
</table>

Discussion
In the present study 25 diabetic patients fulfilled the study design, three blood samples were taken from each patient for analysis. Dietary habits are known to vary from one Muslim Country to another and such changes in dietary habits may be responsible for the changes in the daily caloric intake observed in Ramadan fasting. For example a decrease of daily energy intake during Ramadan has been reported: in Indian Muslim (5). Thus the variation in total caloric consumption may be responsible for the discrepancy in the observed effect of fasting on serum lipid parameters in different studies reported previously from different Muslim Countries. Adlouni et al (6) reported a fall in serum LDL-cholesterol and triglyceride level which was associated with loss of body weight in fasting. A recent study by Mahboob et al (7) showed a favorable effect of fasting on lipid profiles of 35 male normal and hyperlipidemic volunteers. There was significant decrease in serum total cholesterol, triglyceride and LDL-C together with a marked increase in HDL-C. This positive effect was more obvious in hyperlipidemic volunteers who reduced their mean daily energy intake by more than 500 kcal/day. Similar findings were reported also by Latif (8). On the other hand, some other reports (9) indicated an increase in the total cholesterol, TG, and LDL-C during fasting. This effect was attributed to a high consumption of carbohydrates and fats during the month of Ramadan. As a result, physical activities are reduced during the fasting period. People usually restrict their activities during the daytime and spend a long time at night a wake, eating, taking and watching television. The lack of significant effect of fasting on lipid profiles in our study is attributed
probably to the above factors (10). The change in serum albumin was slightly increased during fasting and continued there after. This could be secondary to a high meat intake. P. Value was significant only when the pre-fast samples were compared with post-fasting samples. Further study, however is required to confirm this finding by measuring different food constituents during Ramadan. From this study we noticed the variation in weights (11). Such that the average change is 1.4 Kg. gain in the females while 1.9 Kg. gain in 7 male patients and 1.3 Kg. decrease in 11 male patients. Further study, however is required to confirm this finding by measuring different food constituents during Ramadan.

References